Mechanisms controlling virulence thresholds of mixed viral populations.
نویسندگان
چکیده
The propensity of RNA viruses to revert attenuating mutations contributes to disease and complicates vaccine development. Despite the presence of virulent revertant viruses in some live-attenuated vaccines, disease from vaccination is rare. This suggests that in mixed viral populations, attenuated viruses may limit the pathogenesis of virulent viruses, thus establishing a virulence threshold. Here we examined virulence thresholds using mixtures of virulent and attenuated viruses in a transgenic mouse model of poliovirus infection. We determined that a 1,000-fold excess of the attenuated Sabin strain of poliovirus was protective against disease induced by the virulent Mahoney strain. Protection was induced locally, and inactivated virus conferred protection. Treatment with a poliovirus receptor-blocking antibody phenocopied the protective effect of inactivated viruses in vitro and in vivo, suggesting that one mechanism controlling virulence thresholds may be competition for a viral receptor. Additionally, the type I interferon response reduces poliovirus pathogenesis; therefore, we examined virulence thresholds in mice lacking the alpha/beta interferon receptor. We found that the attenuated virus was virulent in immunodeficient mice due to the enhanced replication and reversion of attenuating mutations. Therefore, while the type I interferon response limits the virulence of the attenuated strain by reducing replication, protection from disease conferred by the attenuated strain in immunocompetent mice can occur independently of replication. Our results identified mechanisms controlling the virulence of mixed viral populations and indicate that live-attenuated vaccines containing virulent virus may be safe, as long as virulent viruses are present at levels below a critical threshold.
منابع مشابه
Mutagenesis-Mediated Decrease of Pathogenicity as a Feature of the Mutant Spectrum of a Viral Population
BACKGROUND RNA virus populations are heterogeneous ensembles of closely related genomes termed quasispecies. This highly complex distribution of variants confers important properties to RNA viruses and influences their pathogenic behavior. It has been hypothesized that increased mutagenesis of viral populations, by treatment with mutagenic agents, can induce alterations in the pathogenic potent...
متن کاملUnderground fires surface.
Genetic exchange by recombination, or reassortment of genomic segments, has been shown to be an important process in RNA virus evolution, resulting often in important phenotypic changes affecting host range and virulence. However, data from numerous systems indicate that reassortant or recombinant genotypes could be selected against in virus populations and suggest that there is coadaptation am...
متن کاملConstraints to Genetic Exchange Support Gene Coadaptation in a Tripartite RNA Virus
Genetic exchange by recombination, or reassortment of genomic segments, has been shown to be an important process in RNA virus evolution, resulting often in important phenotypic changes affecting host range and virulence. However, data from numerous systems indicate that reassortant or recombinant genotypes could be selected against in virus populations and suggest that there is coadaptation am...
متن کاملCompetition-colonization trade-off promotes coexistence of low-virulence viral strains.
RNA viruses exist as genetically diverse populations displaying a range of virulence degrees. The evolution of virulence in viral populations is, however, poorly understood. On the basis of the experimental observation of an RNA virus clone in cell culture diversifying into two subpopulations of different virulence, we study the dynamics of mutating virus populations with varying virulence. We ...
متن کاملDissecting HIV Virulence: Heritability of Setpoint Viral Load, CD4+ T-Cell Decline, and Per-Parasite Pathogenicity
Pathogen strains may differ in virulence because they attain different loads in their hosts, or because they induce different disease-causing mechanisms independent of their load. In evolutionary ecology, the latter is referred to as "per-parasite pathogenicity". Using viral load and CD4+ T-cell measures from 2014 HIV-1 subtype B-infected individuals enrolled in the Swiss HIV Cohort Study, we i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 85 19 شماره
صفحات -
تاریخ انتشار 2011